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---------------------------------------------------------------------ABSTRACT----------------------------------------------------------------- 
Traditional interpreted data-flow analysis is executed on whole plans; however, such whole-program psychoanalysis is not 
executable for large or uncompleted plans. We suggest fragment data-flow analysis as a substitute approach which 
calculates data-flow information for a particular program fragment. The psychoanalysis is parameterized by the extra 
information available about the rest of the program. We depict two frameworks for interracial flow-sensitive fragment 
psychoanalysis, the relationship amongst fragment psychoanalysis and whole-program analysis, and the necessities ensuring 
fragment analysis safety and feasibility. We suggest an application of fragment analysis as a second analysis phase after a 
cheap flow-insensitive whole-program analysis, in order to obtain better data for important program fragments. We also 
depict the design of two fragment analyses derived from an already existing whole-program flow- and context-sensitive 
pointer alias analysis for Computer program and present empirical rating of their cost and precision. Our experiments show 
evidence of dramatic improves precision gettable at a practical cost. 
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1 Introduction 

Many stages of the software development cycle require 
information about the properties of large and complex 
programs. Data-flow analysis extracts semantic information 
which can be used for code optimization, program slicing, 
semantic change analysis, program restructuring, and code 
testing. In many cases, interprocedural data-flow analysis is 
needed to obtain information about program properties that 
depend on the interaction between different procedures. 
Flow insensitive 
Analysis dismisses the governing of arguments and 
computes one answer for the whole program; in contrast, 
flow-sensitive depth psychology follows the control flow 
order of statements and computes different solutions at 
distinct program points. Context-sensitive analysis 
conceives (sometimes approximately) only paths along 
which calls and returns are decently matched, while context-
insensitive psychoanalysis does not make this eminence. 

Traditionally, inter procedural data-flow 
psychoanalysis is planned to examine whole programs; 
however, in many cases such whole-program analysis is 
impracticable. For This research was supported, in part, by 
NSF grants CCR-9501761 and CCR- 9804065, and Edison 
Design Group. Very large programs with hundreds of 
thousands or even millions lines of code, the time 
commanded to build a whole-program representation and 

the space demanded to store it are prohibitive [1]. In many 
cases, the plans are incomplete the source code for 
components of the program (e.g., libraries) is not 
uncommitted. Empirical evidence proposes that precise 
interprocedural flow-sensitive analysis does not scale for 
large programs [18]. In approximately cases the analysis 
results are not needed for the whole program, but only for a 
relatively small part of it | for example, a maintenance task 
for a specific program fragment may only expect data-flow 
information for curriculum directs inside the break up, both 
before and after the sustentation change. This paper suggests 
an alternative approach for plan analysis. Instead of 
addressing the problem of calculating data-flow information 
for the whole program, we deal the trouble of calculating 
data-flow information for a particular program break up. 
The problem is parameterized by the extra information 
available about the rest of the plan. Such fragment data-flow 
psychoanalysis can avoid the troubles of the conventional 
whole-program psychoanalysis. For example, data can be 
found about fragments of very large plans for which whole-
program analysis is prohibitively expensive. Likewise, 
analysis can be executed on fragmentizes of incomplete 
programs; for such programs, traditional whole-program 
analysis is not possible. Eventually, fragment analysis 
calculates data about only the �interesting portion" of the 
curriculum, which can be significantly smaller than the 
program itself. This paper is a first step in investigation the 
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theory and practice of fragment data-flow psychoanalysis. It 
only conceives flow-sensitive fragment analysis. The main 
parts of this work can be summarized as follows: 
-We describe two frameworks for interprocedural flow-
sensitive fragment analysis, derived from existing 
frameworks for whole-program analysis. We discuss the 
relationship between fragment analysis and whole-program 
analysis, and the requirements ensuring fragment analysis 
safety and feasibility. 
•  We suggest a coating of fragment psychoanalysis as a 

second analysis phase after an inexpensive flow-
insensitive whole-program analysis, in order to receive 
better information for important program fragments. 
This approach can be used for plans that are too big to be 
examined by flow-sensitive whole program analysis, yet 
allow flow-insensitive whole-program analysis for 
example, C programs with around 100,000 lines of code 
[1, 18, 17]. 

•  We depict the design of two fragment analyzes derived 
from a whole program flow- and context-sensitive 
pointer alias analysis [10] for C programs. 

•  We present empirical rating of the cost and precision of 
these two fragment pointer alias analyses. We show that 
the time and space costs of the analyses are practical. In 
about 75% of our experiments, the better of the two 
analyses results in a fourfold or higher precision 
improvement over the whole-program flow-insensitive 
solution. 

 
The rest of the paper is formed as follows: Section 2 depicts 
models for flow-sensitive whole-program analysis. Section 
3 talks about frameworks for fragment analysis and the 
issues demanded in their design. Section 4 depicts the 
whole-program pointer alias analysis from [10], and Section 
5 depicts the design of two fragment pointer alias analyses. 
Empirical results are demonstrated in Section 6. Section 7 
describes related work, and Section 8 presents our 
conclusions.  
 
2 Whole-Program Data-Flow Analysis 
 
This section demonstrates two well-known models for 
whole-program interprocedural flow-sensitive data-flow 
analysis. Without loss of generality, we will only consider 
analysis for forward data-flow problems [12]. Given a 
whole program to be analyzed, a whole-program analysis 
constructs a data-flow framework <G, L, F, M, η>, where: 
 

•  G = (N, E,ρ) is a aimed graph with node set N, edge 
set E and starting node pЄN (for our purposes, G is 
an interprocedural control flow graph). 

•  <L, ≤, ^> is a meet semi-lattice [12] with partial 
order ≤ and meet Λ. For simplicity, we only 
consider L which is finite1 and has a top element T.  

•  F ⊆{f j f : L ! Lg is a function space closed under 
composition and arbitrary meets. We assume that F 
is monotone [12]. 

•  M : N →F is an assignment of transfer functions to 
the nodes in G (without loss of generality, we 
assume no edge transfer functions). The transfer 
function for node n will be denoted by fn. 

•  ηЄL is the solution at the bottom of ρ. 
The program is constituted by an interprocedural control 
flow graph (ICFG) [10], which comprises control flow 
graphs for all processes in the program. Each process has a 
single entry node (node ρ is the entry node of the starting 
procedure) and a single exit node. Each call statement is 
constituted by a pair of nodes, a call node and a return node. 
There is an edge from the call node to the entry node of the 
called process; there is also an edge from the exit node of 
the called process to the return node in the calling process. 
 
A path from node n1 to node nk is a sequence of nodes p = 
(n1,�,nk) such that (ni,; ni+1) Є E. Let fp = fn1 o fn2 o ... o 
fnk. An accomplishable path is a path on which every 
process returns to the call site which raised it [16, 10, and 
13]; only such paths represent possible sequences of 
execution steps. A same level realizable path is a 
accomplishable path whose first and last nodes belong to the 
same process, and on which the number of call nodes is 
equal to the number of return nodes. Such paths represent 
sequences of execution steps during which the call stack 
may temporarily grow deeper, but never shallower that its 
original depth, before eventually returning to its original 
depth [13]. The set of all achievable paths from n to m will 
be denoted by RP (n, m); the set of all same-level realizable 
paths from n to m will be denoted by SLRP (n, m). 
  
Definition 1. For each n Є N, the meet-over-all-realizable-
paths (MORP) solution at n is defined as MORP (n) = Λ 
pЄRP(ρ,n) fp(η). 
 
1 The results can be easily generalized for finite-height 
semi-lattices. 
 
Context-Insensitive Analysis. After constructing < G, L, 
F,M,η>, a whole program analysis computes a solution S : 
N →L; the data-flow solution at the bottom of node n will 
be denoted by Sn. The solution is safe iff Sn ≤ MORP(n) for 
each node n; a safe analysis computes a safe solution for 
each valid input program. Traditionally, a system of 
equations is constructed and then solved using fixed-point 
iteration. In the simplest case, a context-insensitive analysis 
constructs a system of equations of the form  

Sp=η,   Sn =     Λ    fn(Sm) 
         m2Pred(n) 

 
Where Pred(n) is the set of predecessor nodes for n. The 
initial solution has Sρ = η and Sn = T for any n ≠ ρ; the final 
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solution is a fixed point of the system and is also a safe 
estimate of the MORP solution. 
 
Context-Sensitive Analysis. The problem with the above 
approach is that data is disseminated from the exit of a 
process to all of its callers. Context sensitive psychoanalysis 
is used to deal this potential source of imprecision. One 
approach is to disseminate factors of L collectively tags 
which approximate the calling circumstance of the 
procedure. At the exit of the process, these tags are looked 
up in order to back-propagate data only to call sites at which 
the corresponding calling context existed. The \functional 
approach" to context sensitivity [16] uses a new fretwork 
that is the function space of functions mapping L to L. 
Intuitively, if the solution at node n is a map hn : L!L, then 
for each x2L we can use hn(x) to approximate fp(x) for each 
path p2SLRP(e; n), where e is the entry node of the 
procedure containing n. In other words, hn(x) estimates the 
part of the solution at n that occurs under calling context x at 
e. If calling context x never occurs at e, then hn(x) = >. The 
solution of the original problem is received as V x2L hn(x). 
In general, this approach requires compact representation of 
functions and explicit functional compositions and meets, 
which are usually infeasible. When L is finite, a feasible 
version of the analysis can be designed [16]. Figure 1 
presents a simplified description of this version. H[n,x] 
contains the current value of hn(x); the worklist contains 
pairs (n,x) for which H[n,x] has changed and has to be 
propagated to the successors of n. If n is a call node, at line 
7 the value of H[n,x] is propagated to the entry node of the 
called procedure. If n is an exit node, the value of H[n,x] is 
propagated only to return nodes at whose corresponding call 
nodes x occurs (lines 8-10). 
For distributive frameworks [12], this algorithm finishes 
with the MORP solution; for non-distributive monotone 
frameworks, it produces a safe approximation of the MORP 
solution [16].When the lattice is the power set of some basic 
finite set D of data-flow facts (e.g., the set all potential 
aliases or the set of all variable definitions), the algorithm 
can be modified to propagate elements of D instead of 
elements of 2D. For distributive frameworks, this approach 
produces a precise solution [13]. For non-distributive 
monotone frameworks, restricting the context to a singleton 
set necessarily introduces some approximation; the whole-
program pointer alias analysis from [10] falls in this 
category. 
input <G; L; F;M; _>; L is finite 
output S: array[N] of L 
declare H: array[N,L] of L; initial values > 
W: list of (n,x), n2N, x2L; initially empty 
 
[1] H[_,_] := _; W := f(_,_)g; 
[2] while W 6= ; do [3] remove (n,x) from W; y:=H[n,x]; 
[4] if n is not a call node or an exit node then 
[5] foreach m2Succ(n) do propagate(m,x,fm(y)); 
[6] if n is a call node then 

[7] e := called entry(n); propagate(e,y,fe(y)); 
[8] if n is an exit node then 
[9] foreach r2Succ(n) and l2L do 
[10] if H[call node(r),l] = x then propagate(r,l,fr (y)); 
[11] foreach n2N do 
[12] S[n] :=V l2L H[n,l]; 
[13] procedure propagate(n,x,y) 
[14] H[n,x] := H[n,x] ^ y; if H[n,x] changed then add (n,x) 
to W; 
 
Fig. 1. Worklist implementation of context-sensitive whole-
program analysis 
 
3 Fragment Data-Flow Analysis 
This section depicts how interprocedural flow-sensitive 
whole-program psychoanalysis can be changed to obtain 
fragment data-flow analysis, which examines a program 
fragment instead of a whole curriculum. The structure of 
context-insensitive and context-sensitive fragment analysis 
is discussed, as well as the issues involved in the design of 
fragment analysis and the requirements ensuring its safety.  
 
3.1 Fragment Analysis Structure 
We assume that the analysis input admits a program 
fragment F, which is an absolute set of processes. We 
expect these procedures to be powerfully interrelated; 
otherwise, the psychoanalysis may yield information that is 
too imprecise. The input also contains whole-program 
information I, which represents the knowledge available 
about the programs to which F belongs. The whole-program 
information depends on the particular software development 
environment and the process in which fragment analysis is 
used; the role of I is further discussed in Sect. 3.2. We will 
use PI(F) to denote the set of all valid whole programs that 
contain F and for which I is true; depending on I, PI (F) can 
be anything from a singleton set (e.g., when the source code 
of the whole program is available) to 
an infinite set. Given F and I, a fragment analysis extracts 
several kinds of information, shown in Table 1. Graph G0 = 
(N0; E0) is the ICFG for the fragment and can be 
constructed similarly to the whole-program case, except for 
calls to procedures outside of F, which are not represented 
by any edges in G0. Set BoundaryEntries contains every 
entry node e2N0 which has a predecessor c =2N0 in some 
program from PI (F). Similarly, BoundaryCalls contains 
every call node c2N0 which has a successor e =2N0 in some 
program from PI (F). Set Boundary Returns comprises the 
return nodes corresponding to call nodes from Boundary 
Calls. 
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Table 1. Information extracted by a fragment analysis 
Information Description 

<G� ; L� ; F� ;M� ;η� > Data-flow framework 
BoundaryEntries Entry nodes of procedures 

called from outside of F 
BoundaryCalls Call nodes to procedures 

outside of F 
BoundaryReturns Return nodes from procedures 

outside of F 
βe : 

BoundaryEntries�L� 
Summary information at 

boundary entry nodes 
βc : BoundaryCalls�F Summary information at 

boundary call nodes 
 

3.2 Fragment Analysis Design 
Designers of a specific fragment analysis have to address 
several important problems. One problem is to decide what 
kind of whole-program information I to use. The decision 
depends on the software development environment, as well 
as the process in which the fragment analysis is used. In this 
paper, we are particularly interested in a process where an 
inexpensive flow-insensitive whole-program 
 
S0 n = V m2Pred(n) f 0 n(S 0 m) if n =2BoundaryEntries [ 
BoundaryReturns 
S 0 n = _e(n) ^ V m2Pred(n) f 0 n(S 0 m) 
ifn2BoundaryEntries 
S0 n = f0 n(_c(m)(S0 m)) if n2BoundaryReturns and m = 
call node(n) 
S 0 _ = _ 0 if _2N 
 

Fig. 2. Context-insensitive fragment analysis 
 

input <G 0 ; L 0 ; F 0 ;M 0 ; _ 0 >; L 0 is _nite 
output S: array[N 0 ] of L 0 
declare H: array[N 0 ,L 0 ] of L 0 ; initial values >0 
W: list of (n,x), n2N 0 , x2L 0 ; initially empty 
 
[1a*] if _2N 0 then 
[1b] H[_,_ 0 ] := _ 0 ; add (_,_ 0 ) to W; 
[1c*] foreach n2BoundaryEntries do 
[1d*] H[n,_e(n)] := _e(n); add (n,_e(n)) to W; 
[2] while W 6= ; do 
[3] remove (n,x) from W; y:=H[n,x]; 
[4] if n is not a call node or an exit node then 
[5] foreach m2Succ(n) do propagate(m,x,f 0 m(y)); 
[6a*] if n is a call node and n =2BoundaryCalls then 
[7a] e := called entry(n); propagate(e,y,f 0 e(y)); 
[6b*] if n is a call node and n2BoundaryCalls then 
[7b*] r := ret node(n); propagate(r,x,f 0 r(_c(n)(y))); 
[8] if n is an exit node then 
[9] foreach r2Succ(n) and l 02L  do 
[10] if H[call node(r),l 0 ] = x then propagate(r,l 0 ,f 0 r(y)); 
[11] foreach n2N 0 do 
[12] S[n] := V l02L0 H[n,l0]; 

 
 

Fig. 3. Worklist implementation of context-sensitive 
fragment analysis 

 
 

analysis is performed first, and then a more precise flow-
sensitive fragment analysis is used on fragments for which 
better information is needed. This approach can be used for 
programs that are too big to be analyzed by flow-sensitive 
wholeprogram analysis, yet allow flow-insensitive whole-
program analysis |for example, C programs with around 
100,000 lines of code [1, 18, 17]. In this scenario, the first 
stage computes a whole-program flow-insensitive solution 
and the program call graph. The second stage uses the call 
graph and the flow-insensitive solution as its whole-
program information I. The two fragment analyses in Sect. 5 
are designed in this manner. 
 
Another problem is to construct the information described in 
Table 1. Sets BoundaryCalls and BoundaryReturns can be 
determined from F. Set BoundaryEntries by definition 
depends on I. The summary information at boundary nodes 
also depends on I. When the fragment analysis follows a 
flow-insensitive whole-program analysis, I contains the call 
graph of the program, from which the boundary entries can 
be easily determined. In this case, fie and fic can be 
extracted from the whole-program flow-insensitive solution, 
as shown in Sect. 5. 
 
The semi-lattice L0 depends mostly on F. However, it may 
be also dependent on I | for example, when the fragment 
analysis follows a flow-insensitive whole program analysis, 
I contains a whole-program solution which may need to be 
represented (possibly approximately) using L0. The 
fragment analysis complexity is bounded by a function of 
the size of L0; therefore, it is crucial to ensure that the size 
of L0 depends only on the size of F and not the size of I. 
This requirement guarantees that the fragment analysis will 
be feasible for relatively small fragments of very large 
programs. The fragment analyses from Sect. 5 illustrate this 
situation. 
 
3.3 Fragment Analysis Safety 
The fragment analyses outlined above are similar in 
structure to the whole program analyses from Sect. 2. In 
fact, we are only interested in fragment analyses that are 
derived from whole-program analyses. Consider a safe 
whole-program analysis which we want to modify in order 
to obtain a safe fragment analysis. The most important 
problem is to define the relationship between the semi-
lattice L0 for a fragment F and the whole-program semi-
lattices Lp for the programs p2PI(F). For each such Lp, the 
designers of the fragment analysis must define an 
abstraction relation _p_Lp _ L0. This relation encodes the 
notion of safety and is used to prove that the analysis is safe; 
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it is never explicitly constructed or used during the analysis. 
If (x; x0)2_p, we will write \_p(x; x0)". 
Intuitively, the abstraction relation _p defines the 
relationship between the \knowledge" represented by values 
from Lp and the \knowledge" represented by values from 
L0. If _p(x; x0), the knowledge associated with x0 \safely 
abstracts" the knowledge associated with x; thus, _p is 
similar in nature to the abstraction relations used for abstract 
interpretation [19, 6]. The choice of _p depends both on the 
original whole-program analysis and the intended clients of 
the fragment analysis solution. Sect. 5 presents an example 
of one such choice. 
 
Definition 2. A solution produced by a fragment analysis 
for an input pair (F; I) is safe if _p(MORPp(n); S0 n) for 
each p2PI(F) and each n2N0, where S0 n is the fragment 
analysis solution at n and MORPp(n) is the MORP solution 
at n in p. A safe fragment analysis yields a safe solution for 
each valid input pair (F; I). 
 
With this definition in mind, we present a set of sufficient 
requirements that ensures the safety of the fragment 
analysis. Intuitively, the first requirement ensures that a safe 
approximation in L0, as defined by the partial order _, is 
also a safe abstraction according to _p. The second 
requirement ensures that if x0 2L0 safely abstracts the 
effects of each realizable path ending at a given node 
n, it can be used to safely abstract the MORP solution at n. 
Formally, for any p2PI (F) and its _p, any x; y 2 Lp and any 
x0; y0 2 L0, the following must be true: 
 
Property 1: if _p(x; x0) and y0 _ x0, then _p(x; y0) 
Property 2: if _p(x; x0) and _p(y; x0), then _p(x ^ y; x0) 
 
The next requirement ensures that the transfer functions in 
the fragment analysis safely abstract the transfer functions 
in the whole-program analysis. Let fn;p be the transfer 
function for n 2N0 in the whole-program analysis for any 
p2PI(F). For any n2N0, x2Lp and x02L0, the following must 
be true: 
 
Property 3: if _p(x; x0), then _p(fn;p(x); f0 n(x0)) 
 
If F contains the starting procedure of the program, then _ 2 
N0 and the fragment analysis solution at the bottom of _ is 
_0. Let _p be the whole-program solution at the bottom of _ 
for any p2PI(F). Then the following must be true: 
 
Property 4: _p(_p; _0) 
 
The next requirement ensures that for each boundary entry 
node e, the summary value _e(e) safely abstracts the effects 
of each realizable path that reaches e from outside of F. For 
any p2PI(F), let RPout p (_; e) be the set of all realizable 
paths q = (_; : : :; c; e) in p such that c =2N0; recall that fq 

is the composition of the transfer functions for the nodes in 
q. Then the following must be true: 
 
Property 5: 8q2RPout p (_; e) : _p(fq(_p); _e(e)) 
 
The last requirement ensures that the summary function 
_c(c) for each boundary call node c safely abstracts the 
effects of each same-level realizable path from the entry to 
the exit of the called procedure. Consider any p2PI(F) in 
which c has a successor entry node e =2N0 and let t be the 
exit node corresponding to e. Let SLRPp(e; t) be the set of 
all same-level realizable paths in p from e to t. Intuitively, 
each realizable path ending at t has a suffix which is a same-
level realizable path; thus, _c(c) should safely abstract each 
path from SLRPp(e; t). Formally, for any x2Lp and x02L0, 
the following must be true: 
 
Property 6: 8q2SLRPp(e; t): if _p(x; x0), then _p(fq(x); 
_c(c)(x0)) 
 
If the above requirements are satisfied, the context-
insensitive fragment analysis derived from a safe context-
insensitive whole-program analysis is safe, according to 
Definition 2. The proof considers a fixed-point solution of 
the system in Fig. 2. It can be shown that for each p 2 PI 
(F), each n 2 N0 and each realizable path q = (_p; : : :; n), it 
is true that _p(fq(_p); S0 n). Each such q is the 
concatenation of two realizable paths r0 and r00. Path r0 
starts from _p and lies entirely outside of F; if _p2N0, r0 is 
empty. Path r00 = (e; : : :; n) has e2N0 and n2N0 and is the 
fragment suffix of q; it may enter and leave F arbitrarily. 
The proof is by induction on the length of the fragment 
suffix of q. 
 
Similarly, the context-sensitive fragment analysis derived 
from a safe context sensitive whole-program analysis is 
safe. It is enough to show that for each p2PI (F), each n 2N0 
and each realizable path q = (_p; : : :; n), there exists a 
value l0 2L0 such that _p(fq(_p);H[n; l0]). Again, this can 
be proven by induction on the length of the fragment suffix 
of q. 
 
4 Whole-Program Pointer Alias Analysis 
This section presents a simplified high-level description of 
the Landi-Ryder whole-program pointer alias analysis [10] 
for the C programming language. The analysis considers a 
set of names that can be described by the grammar in Fig. 4. 
Each of the names corresponds to one or more run-time 
memory locations. An alias pair (or simply an alias) is a 
pair of names that potentially represent the same memory 
location. 
 
<Name> ::= <SimpleName> j <Deref> j <ArrayElem> 

|  <FieldAccess> j <K-Limited> 
<SimpleName> ::= identifier /* variable name */ 

|  heapn /* heap location */ 
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<Deref> ::= *(<Name>+?) /* dereference */ 
<ArrayElem> ::= <Name>[?] /* array element */ 
<Fld> ::= identifier /* field name */ 
<FieldAccess> ::= <Name>.<Fld> /* field of a structure */ 
<K-Limited> ::= <Name># /* k-limited name */ 
 

Fig. 4. Grammar for names 
If a program point n is a call to malloc or a similar function, 
name heapn represents the set of all heap memory locations 
created at this point during execution. If there are recursive 
data structures (e.g., linked lists), the number of names is 
potentially infinite. The analysis limits the number of 
dereferences in a name to a given constant k; any name with 
more that k dereferences is represented by a k-limited name. 
For example, for k = 1, name (_((_p):f)):f is represented by 
the k-limited name ((_p):f)#. 
 
A simple name is a name generated by the SimpleName 
nonterminal in the grammar. The root name of a name n is 
the simple name used when n is generated by the grammar; 
for example, the root name of (_p):f is p. Name n is a fixed 
location if it does not contain any dereferences. Name (_p):f 
is not a fixed location, while s[?]:f is a fixed location. 
 
The lattice of the analysis is the power set of the set of all 
pairs of names; the meet operator is set union and the partial 
order is the \is-superset-of" relation. The analysis is flow- 
and context-sensitive, and conceptually follows the Sharir- 
Pnueli algorithm described in Sect. 2. However, since the 
lattice is a power set, the algorithm can be modified to 
propagate single aliases instead of sets of aliases | the 
worklist contains triples (n,RA,PA), where n is a node, RA is 
a reaching alias that is part of the solution at the entry of the 
procedure to which n belongs, and PA is a possible alias at 
the bottom of n. Restricting the reaching alias set to a single 
alias introduces some approximation; therefore, the actual 
Landi-Ryder algorithm can be viewed as an approximation 
algorithm solving the more precise Sharir-Pnueli 
formulation of the problem. 
 
The fragment analyses in Sect. 5 are derived from a 
modified version of the Landi-Ryder analysis. This version 
considers only aliases containing a fixed location; aliases 
with two non-fixed locations (e.g., an alias between (_p):f 
and _q) are ignored during propagation. It can be shown that 
this is safe, as long as the program does not contain 
assignments in the form *p=&x; if such assignments 
exist, they can be removed by introducing intermediate 
temporary variables | for example, t=&x; *p=t. An 
assignment whose left-hand side is a non-fixed location (i.e., 
through-deref assignment) potentially modifies many fixed 
locations. A safe solution for the modified analysis is 
sufficient to estimate all fixed locations possibly modified 
by through-deref assignments. We refer to this process as 
resolution of through-deref assignments. 
 

5 Fragment Pointer Alias Analyses 
This section describes two fragment pointer alias analyses | 
basic analysis A1 and extended analysis A2 | derived from 
the modified whole-program analysis in Sect. 4. They are 
used for resolution of through-deref assignments. Their 
design is based on a process in which flow-insensitive 
whole-program pointer alias analysis is performed _rst, and 
then more precise flow-sensitive fragment pointer alias 
analysis is used on fragments for which better information is 
needed. As described in Sect. 3.2, in this case the whole-
program information I contains a whole-program flow-
insensitive solution and the program call graph.  
Analysis Input. The flow-insensitive solution SFI is obtained 
using a wholeprogram flow- and context-insensitive 
analysis similar to the one in [21]. Intuitively, the names in 
the program are partitioned into equivalence classes; if two 
names can be aliases, they belong to the same class in the 
final solution. Every name starts in its own equivalence 
class and then classes are joined as possible aliases are 
discovered. For example, statement p=&x causes the 
equivalence classes of _p and x to merge. Overall, the 
analysis is similar to other flow- and context-insensitive 
analyses with almost-linear cost [17, 15]. Then SFI is used 
to resolve calls through function pointers and to produce a 
safe approximation of the program call graph. The sets of 
boundary entry, call and return nodes can be easily 
determined from this graph. 
 
The basic analysis A1 takes as input SFI and the program 
call graph, as well as the source code for the analyzed 
fragment F. The extended analysis A2 requires as additional 
input the source code for  all procedures directly or 
indirectly called by procedures in F. These additional 
procedures together with the procedures from F form the 
extended fragment Fext . Including all transitively called 
procedures allows A2 to estimate better the effects of calls 
to procedures outside of F; the tradeoffs of this approach are 
further discussed in Sect. 8. 
 
Analysis Lattices. The whole-program lattice is based on the 
set of names generated by the grammar in Fig. 4. Each such 
name can be classified as either relevant or irrelevant. A 
relevant name has a root name with a syntactic occurrence 
in the fragment; all other names are irrelevant. Since the 
fragment analysis solution is used to resolve through-deref 
assignments, only aliases that contain a relevant non-fixed 
location are useful. If the new lattice L0 contains all such 
aliases, its size still potentially depends on the number of 
fixed locations in the whole program. This problem can be 
solved by using special placeholder variables to represent 
sets of related irrelevant fixed locations; this approach is 
similar to the use of representative data-flow values in other 
analyses [11, 10, 7, 20, 4]. 
 
Consider an equivalence class Ei 2 SFI that contains at least 
one relevant name. If Ei contains irrelevant fixed locations, 



Int. J. Advanced Networking and Applications   
Volume: 6 Issue: 3   Pages: 2319-2328   (2014) ISSN : 0975-0290 
 
 

2325

a placeholder variable phi is used to represent them. The 
aliases from L0 fall in two categories: (1) a pair of relevant 
names, exactly one of which is a fixed location, and (2) a 
relevant non-fixed location and a placeholder variable. 
Clearly, the number of relevant names and the number of 
placeholder variables depend only on the size of the 
fragment; thus, the size of L0 is independent of the size of 
the whole program. 
 
In the final solution, an alias with two relevant names 
represents itself, while an alias with a placeholder phi 
represents a set of aliases, one for each irrelevant fixed 
location represented by phi. This can be formalized by 
defining an abstraction relation _p _Lp _ L0 for each p2PI 
(F). For each pair of sets S 2 Lp and S0 2L0, we have _p(S; 
S0) i_ each alias from S is safely abstracted by S0. Let x be 
the non-fixed location in alias (x,y)2S; then _p is defined as 
follows: 
 
- If x is an irrelevant name, then (x,y) is safely abstracted by 
S0 
- If x and y are relevant and (x,y)2S0, then (x,y) is safely 
abstracted by S0 
- If x is relevant and y is irrelevant, Ei is y's equivalence 
class, and (x,phi)2S0, 
  then (x,y) is safely abstracted by S0 
 
Intuitively, the above definition says that aliases involving 
an irrelevant non- fixed location can be safely ignored. It 
also says that irrelevant fixed locations from the same 
equivalence class have equivalent behavior and need not be 
considered individually. The safety implications of this 
definition are discussed later. Note that if a fragment alias 
solution is safe according to the above definition, it can be 
used to safely resolve through-deref assignments. 
 
Summaries at Boundary Nodes. Based on SFI , A1 and A2 
construct a set of aliases _2L0. Each equivalence class Ei is 
examined and for each pair of names (x,y) of a non-fixed 
location x and a fixed location y from the class, the 
following is done: first, if x is an irrelevant name, the pair is 
ignored. Otherwise, if y is a relevant name, (x,y) is added to 
_. Otherwise, if y is an irrelevant name, (x,phi) is added to _. 
Clearly, (x,y) is safely abstracted by _ according to the 
definition of _p given above. 
 
The basic analysis A1 defines _e(e) = _ for each boundary 
entry node e and and _c(c)(x) = _ for each x 2 L0 and each 
boundary call node c. This essentially means that SFI is 
used to approximate the solutions at boundary entry nodes 
and boundary return nodes. For the extended analysis A2, 
there are no boundary call nodes. For each boundary entry 
node e that belongs to the original fragment F, the analysis 
defines _e(e) = _. If e is part of the extended fragment Fext, 
but is not part of the original fragment F, the analysis 
defines _e(e) = θ. 

 
Analysis Safety. To show the safety of A1, it is enough to 
show that the requirements from Sect. 3.3 are satisfied. 
Properties 1 and 2 are trivially satisfied. Since both _p and 
_0 are the empty set, Property 4 is also true. 
 
Showing that Property 3 is true requires careful examination 
of the transfer functions from [10]. The formal proof is 
based on two key observations. The first one is that aliases 
involving an irrelevant non-fixed location are only 
propagated through the nodes in the fragment, without 
actually creating any new aliases; therefore, they can be 
safely ignored. The second observation is that aliases with 
the same no fixed location and with different irrelevant 
fixed locations have equivalent behavior. For example, alias 
(_p,x) at the top of statement q=p; results in (_p,x) and 
(_q,x) at the bottom of the statement. Similarly, (_p,y) 
results in (_p,y) and (_q,y). If both x and y are represented 
by a placeholder phi, alias (_p,phi) results in (_p,phi) and 
(_q,phi), which satisfies Property 3. 
 
The set _ described above is extracted from the whole-
programflow-insensitive alias solution, which is safe. 
Therefore, _ safely abstracts any alias that could be true at a 
node in the program; thus, Properties 5 and 6 are true. Since 
all requirements are satisfied, A1 is safe. Similarly to the 
whole-program case, the actual implementation propagates 
single aliases instead of sets of aliases. As a result, the 
reaching alias set is restricted to a single alias and therefore 
some approximation is introduced. Of course, the resulting 
solution is still safe. 
 
For the extended analysis A2, it is not true that the solution 
is safe at each node in the extended fragment. For example, 
consider the entry node of a procedure that was not in the 
original fragment F. If this procedure is called from outside 
of the extended fragment Fext , aliases could be propagated 
along this call edge during the whole-program analysis, but 
would be missing in the fragment analysis. However, it can 
be proven that for each node in the original fragment F, the 
solution is safe. The proof is very similar to the one outlined 
in Sect. 3.3, and still requires that Properties 1 through 4 are 
true. For each realizable path q starting at _ and ending at a 
node in F, its fragment suffix is the subpath starting at the 
first node in q that belongs to F. The proof is by induction 
on the length of the fragment suffix; the base case of the 
induction depends on the fact that _e(e) = _ for boundary 
entry nodes in F, and therefore the solution at such nodes is 
safe. 
 
6 Empirical Results 
Our implementation uses the PROLANGS Analysis 
Framework2 (version 1.0), which incorporates the Edison 
Design Group front end for C/C++. The results were 
gathered on a Sun Sparc-20 with 352 MB of memory. The 
implementation analyzes a reduced version of C that 
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excludes signals, setjmp, and longjmp, but allows function 
pointers, type casting and union types. 
 
Table 2 describes the C programs used in our experiments. 
It shows the program size in lines of code and number of 
ICFG nodes, the number of procedures, the total number of 
assignments, and the number of through-deref assignments. 

 
Table 2. Analyzed Programs 

 
 
For each of the data programs, we extracted by hand subsets 
of related procedures that formed a cohesive fragment. 
Significant effort was put in determining realistic fragments 
| the program source code was thoroughly examined, the 
program call graph was used to obtain better understanding 
of the calling relationships in the program, and the 
documentation (both external and inside the source code) 
was carefully analyzed. For each program, two fragments 
were extracted. For example, for zip one of the fragments 
consisted of all procedures implementing the implosion 
algorithm. For espresso, one of the fragments consisted of 
the procedures for reducing the cubes of a boolean function. 
For sc, one of the fragments consisted of the procedures 
used to evaluate expressions in a spreadsheet. Some 
characteristics of the fragments are given in Table 3. 
 
For each fragment, three experiments were performed; the 
results are shown in Table 4. In the first experiment, the 
solution from the whole-program flowinsensitive (FI) 
analysis was used at each through-deref assignment to 
determine the number of simple names possibly modified by 
the assignment. For a fixed location that was not a simple 
name, a modification of its root simple name was counted 
(e.g., a modification of s:f was counted as a modification of 
s). Then  

 
 

Table 3. Analyzed Fragments 

 
Table 4. Precision Comparison 

 
Fragmen
t 

WholePrg
m FI 

Basic 
FFS 

Perce
nt 

Extende
d FFS 

Perce
nt 

zip.1 15.78 12.98 82.3 12.98 82.3 
zip.2 3.88 1.02 26.3 1.02 26.3 
sc.1 9.50 9.00 94.7 1.00 10.5 
sc.2 13.14 3.29 25.0 3.29 25.0 
larn.1 17.00 14.57 85.7 1.00 5.9 
larn.2 9.00 9.00 100.0 1.00 11.1 
espresso.
1 

107.10 107.1
0 

100.0 34.00 31.7 

espresso.
2 

57.55 57.55 100.0 35.11 61.0 

tsl.1 41.87 17.07 40.8 1.00 2.4 
tsl.2 41.88 24.82 59.3 1.00 2.4 
moria.1 132.80 1.46 1.1 1.46 1.1 
moria.2 31.04 3.55 11.4 3.55 11.4 
 
the average across all through-deref assignments in the 
fragment was taken. In the second experiment, the FI 
analysis was followed by the basic fragment flowsensitive 
(FFS) analysis. Again, for each through-deref assignment 
the number of simple names possibly modified was 
determined; placeholder variables were expanded to 
determine the actual simple names modified. Then the 
average across all through-deref assignments was taken. 
Each of these averages is shown as an absolute value and as 
a percent of the FI average. The third experiment used the 
extended fragment analysis instead of the basic fragment 
analysis. 
Overall, the results show that the precision of the extended 
analysis is very good. In particular, for seven fragments it 
produces averages very close to 1, which is the lower 
bound. The averages are bigger than 4 for only three 
fragments; all three take as input a pointer to an external 
data structure, and a large number of the through-deref 
assignments in the fragment are through this pointer. The 
pointer itself is not modified, and each modification through 
it resolves to the same number of simple names as in the FI 
solution. 

Fragment ICFG 
Node

s 

 
% 

Tota
l 

Proc
s 

Boundary Assignments 
Entrie

s 
Call

s 
All Dere

f 

zip.1 1351 21.9 28 5 17 776 59 
zip.2 429 7.0 9 5 19 255 50 
sc.1 1238 18.5 30 3 30 609 8 
sc.2 793 11.9 13 3 10 459 23 
larn.1 345 2.9 4 4 35 188 46 
larn.2 420 3.5 11 9 44 216 4 
espresso.
1 

440 2.9 6 2 40 234 38 

espresso.
2 

963 6.3 19 5 113 461 53 

tsl.1 355 2.3 13 4 33 175 15 
tsl.2 1004 6.5 29 7 134 459 17 
moria.1 2678 13.2 43 14 348 163

4 
392 

moria.2 1221 6.0 27 7 149 644 49 

Pro
gra
m 

L
O
C 

IC
FG 
No
de
s 

Pr
oc
s 

Assign
ments 

Pro
gra
m 

L
O
C 

IC
FG 
No
de
s 

Pr
oc
s 

Assignm
ents 

Al
l 

D
er
ef 

Al
l 

D
er
ef 

zip 81
77 

61
72 

12
2 

34
43 

58
2 

espr
esso 

14
91
0 

15
33
9 

37
2 

78
22 

13
22 

sc 85
30 

66
78 

16
0 

34
40 

15
9 

tsl 16
05
3 

15
46
9 

47
1 

72
49 

50
7 

larn 10
01
4 

12
06
3 

29
8 

60
21 

38
9 

mor
ia 

25
29
2 

20
21
3 

45
8 

10
55
7 

13
58 
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The performance of the basic analysis is less satisfactory. 
For five fragments, it achieves the same precision as the 
extended analysis. For the remaining fragments, in five 
cases the solution is close to the FI solution. The main 
reason is that precision gains from flow-sensitivity are lost 
at calls to procedures outside of the fragment. 
 
Table 5 shows the running times of the analyses in minutes 
and seconds. The last two columns give the used space in 
kilobytes. The results show that the cost of the fragment 
analyses is acceptable, in terms of both space and time. 
 
7 Related Work 
In Harrold and Rothermel's separate pointer alias analysis 
[8], a software module is analyzed separately and later 
linked with other modules. The analysis is based  
 

Table 5. Analysis Time and Space 
Fragment WholePr

gm FI 
Basi
c 
FFS 

Extend
ed FFS 

Basic 
Space 

Extende
d Space 

zip.1 0:02 1:01 1:35 2544 3784 
zip.2 0:02 0:18 0:18 2064 2064 
sc.1 0:02 0:18 0:18 2504 2504 
sc.2 0:02 0:25 0:33 2664 2824 
larn.1 0:03 0:22 0:27 3760 6560 
larn.2 0:03 0:20 0:28 3680 6556 
espresso.1 0:07 0:52 1:58 5504 17400 
espresso.2 0:07 0:56 3:07 5504 26904 
tsl.1 0:08 0:33 0:43 5776 8672 
tsl.2 0:08 1:15 1:25 12480 18648 
moria.1 0:09 1:22 1:29 9504 10464 
moria.2 0:09 1:39 1:37 7608 17440 
 
on the whole-program analysis from [10]; it simulates the 
aliasing effects that are possible under all calling contexts 
for the module. Placeholder variables are used to represent 
sets of variables that are not explicitly referenced in the 
module, similarly to the placeholder variables in our 
fragment pointer alias analyses. Aliases are assigned extra 
tags describing the module calling context. 
 
There are several differences between our work and [8]. 
First, we have designed a general framework for fragment 
analysis and emphasized the importance of the theoretical 
requirements that ensure analysis safety and feasibility. 
Second, the intended application of our fragment pointer 
alias analyses is to improve the information about a part of 
the program after an inexpensive whole-program analysis; 
the application in [8] is separate analysis of single-entry 
modules. Finally, [8] does not present empirical evaluation 
of the performance of the analysis; we believe that their 
approach may have scalability problems. 
 

Reference [11] presents an analysis that decomposes the 
program into regions in which several local problems are 
solved. Representative values are used for actual data-flow 
information that is external to the region; our placeholder 
variables are similar to these representative values. Other 
similar mechanisms are the non-visible names from [10, 7], 
extended parameters from [20], and unknown initial values 
from [4].We use an abstraction relation to capture the 
correspondence between the representative and the actual 
data-flow information; this is similar to the use of 
abstraction relations in the field of abstract interpretation 
[19, 6]. 
 
The work in [3] also addresses the analysis of program 
fragments and uses the notion of representative data-flow 
information for external data-flow values. However, in [3] 
the specific fragments are libraries with no boundary calls, 
the analysis computes def-use associations in object-
oriented languages with exceptions, and there is no 
assumption of available whole-program information. 
 
Cardelli [2] considers separate type checking and 
compilation of program fragments. He proposes a 
theoretical framework in which program fragments are 
separately compiled in the context of some information 
about missing fragments, and later can be safely linked 
together. 
 
Model checking is a technique for verifying properties of 
finite-state systems; the desired properties are specified 
using temporal-logic formulae. Modular model checking 
verifies properties of system modules, under some 
assumptions about the environment with which the module 
interacts [9]. These assumptions play an analogous role to 
that of the whole-program information in fragment 
analysis. Further discussion of the relationship between 
data-flow analysis and model checking is given in [14]. 
 
There is some similarity in the problem addressed by our 
work and that in [5], which presents an analysis of modular 
logic programs for which a compositional semantics is 
defined. Each module can be analyzed using an abstract 
interpretation of the semantics. The analysis results for 
separate modules can be composed to yield results for the 
whole program, or alternatively, the results for one module 
can be used during the analysis of another module. 
 
8 Conclusions 
This paper is a first step in investigating the theory and 
practice of fragment data-flow analysis. It proposes 
fragment analysis as an alternative to traditional whole-
program analysis. The theoretical issues involved in the 
design of safe and feasible flow-sensitive fragment analysis 
are discussed. One possible application of fragment analysis 
is to be used after a whole-program flow-insensitive 
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analysis in order to improve the precision for an interesting 
portion of the program. This paper presents one such 
example, in which better information about modifications 
through pointer dereference is obtained by performing flow- 
and context-sensitive fragment pointer alias analysis. The 
design of two such analyses is described, and empirical 
results evaluating their cost and precision are presented. 
 
The empirical results show that the extended analysis 
presented in Sect. 5 can achieve significant precision 
benefits at a practical cost. The performance of the basic 
analysis is less satisfactory, even though in about half of the 
cases it achieves the precision of the extended analysis. 
Clearly, in some cases the whole-program flow-insensitive 
solution is not a precise enough estimate of the 
effects of calls to external procedures. The extended 
analysis solves this problem for the fragments used in our 
experiments. We expect this approach to work well in cases 
when the extended fragment is not much bigger than the 
original fragment. One typical example would be a fragment 
with calls only to relatively small external procedures which 
provide simple services; in our experience, this is a common 
situation. However, in some cases the extended fragment 
may contain a prohibitively large part of the program; 
furthermore, the source code for some procedures may not 
be available. We are currently investigating different 
solutions to these problems. 
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