
Int. J. Advanced Networking and Applications
Volume: 6 Issue: 3 Pages: 2319-2328 (2014) ISSN : 0975-0290

2319

Information-Flow Analysis of Design
Breaks up

Rajendra kumar
Research Scholar-Department of Computer Science, GITM Lucknow, Uttar Pradesh technical University, Lucknow.

Email: rajendra888999@gmail.com
Anil Kumar

Research Scholar-Department of Computer Science, GITM Lucknow, Uttar Pradesh technical University, Lucknow.
Email: anilgangwar15@gmail.com

Namrata Dhanda
Assott. Professor-Department of Computer Science, GITM Lucknow, Uttar Pradesh technical University, Lucknow.

Email: ndhanda510@gmail.com

---ABSTRACT---
Traditional interpreted data-flow analysis is executed on whole plans; however, such whole-program psychoanalysis is not
executable for large or uncompleted plans. We suggest fragment data-flow analysis as a substitute approach which
calculates data-flow information for a particular program fragment. The psychoanalysis is parameterized by the extra
information available about the rest of the program. We depict two frameworks for interracial flow-sensitive fragment
psychoanalysis, the relationship amongst fragment psychoanalysis and whole-program analysis, and the necessities ensuring
fragment analysis safety and feasibility. We suggest an application of fragment analysis as a second analysis phase after a
cheap flow-insensitive whole-program analysis, in order to obtain better data for important program fragments. We also
depict the design of two fragment analyses derived from an already existing whole-program flow- and context-sensitive
pointer alias analysis for Computer program and present empirical rating of their cost and precision. Our experiments show
evidence of dramatic improves precision gettable at a practical cost.

Date of Submission: February 11, 2014 Date of Acceptance: March 12, 2014

1 Introduction

Many stages of the software development cycle require
information about the properties of large and complex
programs. Data-flow analysis extracts semantic information
which can be used for code optimization, program slicing,
semantic change analysis, program restructuring, and code
testing. In many cases, interprocedural data-flow analysis is
needed to obtain information about program properties that
depend on the interaction between different procedures.
Flow insensitive
Analysis dismisses the governing of arguments and
computes one answer for the whole program; in contrast,
flow-sensitive depth psychology follows the control flow
order of statements and computes different solutions at
distinct program points. Context-sensitive analysis
conceives (sometimes approximately) only paths along
which calls and returns are decently matched, while context-
insensitive psychoanalysis does not make this eminence.

Traditionally, inter procedural data-flow
psychoanalysis is planned to examine whole programs;
however, in many cases such whole-program analysis is
impracticable. For This research was supported, in part, by
NSF grants CCR-9501761 and CCR- 9804065, and Edison
Design Group. Very large programs with hundreds of
thousands or even millions lines of code, the time
commanded to build a whole-program representation and

the space demanded to store it are prohibitive [1]. In many
cases, the plans are incomplete the source code for
components of the program (e.g., libraries) is not
uncommitted. Empirical evidence proposes that precise
interprocedural flow-sensitive analysis does not scale for
large programs [18]. In approximately cases the analysis
results are not needed for the whole program, but only for a
relatively small part of it | for example, a maintenance task
for a specific program fragment may only expect data-flow
information for curriculum directs inside the break up, both
before and after the sustentation change. This paper suggests
an alternative approach for plan analysis. Instead of
addressing the problem of calculating data-flow information
for the whole program, we deal the trouble of calculating
data-flow information for a particular program break up.
The problem is parameterized by the extra information
available about the rest of the plan. Such fragment data-flow
psychoanalysis can avoid the troubles of the conventional
whole-program psychoanalysis. For example, data can be
found about fragments of very large plans for which whole-
program analysis is prohibitively expensive. Likewise,
analysis can be executed on fragmentizes of incomplete
programs; for such programs, traditional whole-program
analysis is not possible. Eventually, fragment analysis
calculates data about only the �interesting portion" of the
curriculum, which can be significantly smaller than the
program itself. This paper is a first step in investigation the

Int. J. Advanced Networking and Applications
Volume: 6 Issue: 3 Pages: 2319-2328 (2014) ISSN : 0975-0290

2320

theory and practice of fragment data-flow psychoanalysis. It
only conceives flow-sensitive fragment analysis. The main
parts of this work can be summarized as follows:
-We describe two frameworks for interprocedural flow-
sensitive fragment analysis, derived from existing
frameworks for whole-program analysis. We discuss the
relationship between fragment analysis and whole-program
analysis, and the requirements ensuring fragment analysis
safety and feasibility.
• We suggest a coating of fragment psychoanalysis as a

second analysis phase after an inexpensive flow-
insensitive whole-program analysis, in order to receive
better information for important program fragments.
This approach can be used for plans that are too big to be
examined by flow-sensitive whole program analysis, yet
allow flow-insensitive whole-program analysis for
example, C programs with around 100,000 lines of code
[1, 18, 17].

• We depict the design of two fragment analyzes derived
from a whole program flow- and context-sensitive
pointer alias analysis [10] for C programs.

• We present empirical rating of the cost and precision of
these two fragment pointer alias analyses. We show that
the time and space costs of the analyses are practical. In
about 75% of our experiments, the better of the two
analyses results in a fourfold or higher precision
improvement over the whole-program flow-insensitive
solution.

The rest of the paper is formed as follows: Section 2 depicts
models for flow-sensitive whole-program analysis. Section
3 talks about frameworks for fragment analysis and the
issues demanded in their design. Section 4 depicts the
whole-program pointer alias analysis from [10], and Section
5 depicts the design of two fragment pointer alias analyses.
Empirical results are demonstrated in Section 6. Section 7
describes related work, and Section 8 presents our
conclusions.

2 Whole-Program Data-Flow Analysis

This section demonstrates two well-known models for
whole-program interprocedural flow-sensitive data-flow
analysis. Without loss of generality, we will only consider
analysis for forward data-flow problems [12]. Given a
whole program to be analyzed, a whole-program analysis
constructs a data-flow framework <G, L, F, M, η>, where:

• G = (N, E,ρ) is a aimed graph with node set N, edge
set E and starting node pЄN (for our purposes, G is
an interprocedural control flow graph).

• <L, ≤, ^> is a meet semi-lattice [12] with partial
order ≤ and meet Λ. For simplicity, we only
consider L which is finite1 and has a top element T.

• F ⊆{f j f : L ! Lg is a function space closed under
composition and arbitrary meets. We assume that F
is monotone [12].

• M : N →F is an assignment of transfer functions to
the nodes in G (without loss of generality, we
assume no edge transfer functions). The transfer
function for node n will be denoted by fn.

• ηЄL is the solution at the bottom of ρ.
The program is constituted by an interprocedural control
flow graph (ICFG) [10], which comprises control flow
graphs for all processes in the program. Each process has a
single entry node (node ρ is the entry node of the starting
procedure) and a single exit node. Each call statement is
constituted by a pair of nodes, a call node and a return node.
There is an edge from the call node to the entry node of the
called process; there is also an edge from the exit node of
the called process to the return node in the calling process.

A path from node n1 to node nk is a sequence of nodes p =
(n1,�,nk) such that (ni,; ni+1) Є E. Let fp = fn1 o fn2 o ... o
fnk. An accomplishable path is a path on which every
process returns to the call site which raised it [16, 10, and
13]; only such paths represent possible sequences of
execution steps. A same level realizable path is a
accomplishable path whose first and last nodes belong to the
same process, and on which the number of call nodes is
equal to the number of return nodes. Such paths represent
sequences of execution steps during which the call stack
may temporarily grow deeper, but never shallower that its
original depth, before eventually returning to its original
depth [13]. The set of all achievable paths from n to m will
be denoted by RP (n, m); the set of all same-level realizable
paths from n to m will be denoted by SLRP (n, m).

Definition 1. For each n Є N, the meet-over-all-realizable-
paths (MORP) solution at n is defined as MORP (n) = Λ
pЄRP(ρ,n) fp(η).

1 The results can be easily generalized for finite-height
semi-lattices.

Context-Insensitive Analysis. After constructing < G, L,
F,M,η>, a whole program analysis computes a solution S :
N →L; the data-flow solution at the bottom of node n will
be denoted by Sn. The solution is safe iff Sn ≤ MORP(n) for
each node n; a safe analysis computes a safe solution for
each valid input program. Traditionally, a system of
equations is constructed and then solved using fixed-point
iteration. In the simplest case, a context-insensitive analysis
constructs a system of equations of the form

Sp=η, Sn = Λ fn(Sm)
 m2Pred(n)

Where Pred(n) is the set of predecessor nodes for n. The
initial solution has Sρ = η and Sn = T for any n ≠ ρ; the final

Int. J. Advanced Networking and Applications
Volume: 6 Issue: 3 Pages: 2319-2328 (2014) ISSN : 0975-0290

2321

solution is a fixed point of the system and is also a safe
estimate of the MORP solution.

Context-Sensitive Analysis. The problem with the above
approach is that data is disseminated from the exit of a
process to all of its callers. Context sensitive psychoanalysis
is used to deal this potential source of imprecision. One
approach is to disseminate factors of L collectively tags
which approximate the calling circumstance of the
procedure. At the exit of the process, these tags are looked
up in order to back-propagate data only to call sites at which
the corresponding calling context existed. The \functional
approach" to context sensitivity [16] uses a new fretwork
that is the function space of functions mapping L to L.
Intuitively, if the solution at node n is a map hn : L!L, then
for each x2L we can use hn(x) to approximate fp(x) for each
path p2SLRP(e; n), where e is the entry node of the
procedure containing n. In other words, hn(x) estimates the
part of the solution at n that occurs under calling context x at
e. If calling context x never occurs at e, then hn(x) = >. The
solution of the original problem is received as V x2L hn(x).
In general, this approach requires compact representation of
functions and explicit functional compositions and meets,
which are usually infeasible. When L is finite, a feasible
version of the analysis can be designed [16]. Figure 1
presents a simplified description of this version. H[n,x]
contains the current value of hn(x); the worklist contains
pairs (n,x) for which H[n,x] has changed and has to be
propagated to the successors of n. If n is a call node, at line
7 the value of H[n,x] is propagated to the entry node of the
called procedure. If n is an exit node, the value of H[n,x] is
propagated only to return nodes at whose corresponding call
nodes x occurs (lines 8-10).
For distributive frameworks [12], this algorithm finishes
with the MORP solution; for non-distributive monotone
frameworks, it produces a safe approximation of the MORP
solution [16].When the lattice is the power set of some basic
finite set D of data-flow facts (e.g., the set all potential
aliases or the set of all variable definitions), the algorithm
can be modified to propagate elements of D instead of
elements of 2D. For distributive frameworks, this approach
produces a precise solution [13]. For non-distributive
monotone frameworks, restricting the context to a singleton
set necessarily introduces some approximation; the whole-
program pointer alias analysis from [10] falls in this
category.
input <G; L; F;M; _>; L is finite
output S: array[N] of L
declare H: array[N,L] of L; initial values >
W: list of (n,x), n2N, x2L; initially empty

[1] H[_,_] := _; W := f(_,_)g;
[2] while W 6= ; do [3] remove (n,x) from W; y:=H[n,x];
[4] if n is not a call node or an exit node then
[5] foreach m2Succ(n) do propagate(m,x,fm(y));
[6] if n is a call node then

[7] e := called entry(n); propagate(e,y,fe(y));
[8] if n is an exit node then
[9] foreach r2Succ(n) and l2L do
[10] if H[call node(r),l] = x then propagate(r,l,fr (y));
[11] foreach n2N do
[12] S[n] :=V l2L H[n,l];
[13] procedure propagate(n,x,y)
[14] H[n,x] := H[n,x] ^ y; if H[n,x] changed then add (n,x)
to W;

Fig. 1. Worklist implementation of context-sensitive whole-
program analysis

3 Fragment Data-Flow Analysis
This section depicts how interprocedural flow-sensitive
whole-program psychoanalysis can be changed to obtain
fragment data-flow analysis, which examines a program
fragment instead of a whole curriculum. The structure of
context-insensitive and context-sensitive fragment analysis
is discussed, as well as the issues involved in the design of
fragment analysis and the requirements ensuring its safety.

3.1 Fragment Analysis Structure
We assume that the analysis input admits a program
fragment F, which is an absolute set of processes. We
expect these procedures to be powerfully interrelated;
otherwise, the psychoanalysis may yield information that is
too imprecise. The input also contains whole-program
information I, which represents the knowledge available
about the programs to which F belongs. The whole-program
information depends on the particular software development
environment and the process in which fragment analysis is
used; the role of I is further discussed in Sect. 3.2. We will
use PI(F) to denote the set of all valid whole programs that
contain F and for which I is true; depending on I, PI (F) can
be anything from a singleton set (e.g., when the source code
of the whole program is available) to
an infinite set. Given F and I, a fragment analysis extracts
several kinds of information, shown in Table 1. Graph G0 =
(N0; E0) is the ICFG for the fragment and can be
constructed similarly to the whole-program case, except for
calls to procedures outside of F, which are not represented
by any edges in G0. Set BoundaryEntries contains every
entry node e2N0 which has a predecessor c =2N0 in some
program from PI (F). Similarly, BoundaryCalls contains
every call node c2N0 which has a successor e =2N0 in some
program from PI (F). Set Boundary Returns comprises the
return nodes corresponding to call nodes from Boundary
Calls.

Int. J. Advanced Networking and Applications
Volume: 6 Issue: 3 Pages: 2319-2328 (2014) ISSN : 0975-0290

2322

Table 1. Information extracted by a fragment analysis
Information Description

<G� ; L� ; F� ;M� ;η� > Data-flow framework
BoundaryEntries Entry nodes of procedures

called from outside of F
BoundaryCalls Call nodes to procedures

outside of F
BoundaryReturns Return nodes from procedures

outside of F
βe :

BoundaryEntries�L�
Summary information at

boundary entry nodes
βc : BoundaryCalls�F Summary information at

boundary call nodes

3.2 Fragment Analysis Design
Designers of a specific fragment analysis have to address
several important problems. One problem is to decide what
kind of whole-program information I to use. The decision
depends on the software development environment, as well
as the process in which the fragment analysis is used. In this
paper, we are particularly interested in a process where an
inexpensive flow-insensitive whole-program

S0 n = V m2Pred(n) f 0 n(S 0 m) if n =2BoundaryEntries [
BoundaryReturns
S 0 n = _e(n) ^ V m2Pred(n) f 0 n(S 0 m)
ifn2BoundaryEntries
S0 n = f0 n(_c(m)(S0 m)) if n2BoundaryReturns and m =
call node(n)
S 0 _ = _ 0 if _2N

Fig. 2. Context-insensitive fragment analysis

input <G 0 ; L 0 ; F 0 ;M 0 ; _ 0 >; L 0 is _nite
output S: array[N 0] of L 0
declare H: array[N 0 ,L 0] of L 0 ; initial values >0
W: list of (n,x), n2N 0 , x2L 0 ; initially empty

[1a*] if _2N 0 then
[1b] H[_,_ 0] := _ 0 ; add (_,_ 0) to W;
[1c*] foreach n2BoundaryEntries do
[1d*] H[n,_e(n)] := _e(n); add (n,_e(n)) to W;
[2] while W 6= ; do
[3] remove (n,x) from W; y:=H[n,x];
[4] if n is not a call node or an exit node then
[5] foreach m2Succ(n) do propagate(m,x,f 0 m(y));
[6a*] if n is a call node and n =2BoundaryCalls then
[7a] e := called entry(n); propagate(e,y,f 0 e(y));
[6b*] if n is a call node and n2BoundaryCalls then
[7b*] r := ret node(n); propagate(r,x,f 0 r(_c(n)(y)));
[8] if n is an exit node then
[9] foreach r2Succ(n) and l 02L do
[10] if H[call node(r),l 0] = x then propagate(r,l 0 ,f 0 r(y));
[11] foreach n2N 0 do
[12] S[n] := V l02L0 H[n,l0];

Fig. 3. Worklist implementation of context-sensitive
fragment analysis

analysis is performed first, and then a more precise flow-
sensitive fragment analysis is used on fragments for which
better information is needed. This approach can be used for
programs that are too big to be analyzed by flow-sensitive
wholeprogram analysis, yet allow flow-insensitive whole-
program analysis |for example, C programs with around
100,000 lines of code [1, 18, 17]. In this scenario, the first
stage computes a whole-program flow-insensitive solution
and the program call graph. The second stage uses the call
graph and the flow-insensitive solution as its whole-
program information I. The two fragment analyses in Sect. 5
are designed in this manner.

Another problem is to construct the information described in
Table 1. Sets BoundaryCalls and BoundaryReturns can be
determined from F. Set BoundaryEntries by definition
depends on I. The summary information at boundary nodes
also depends on I. When the fragment analysis follows a
flow-insensitive whole-program analysis, I contains the call
graph of the program, from which the boundary entries can
be easily determined. In this case, fie and fic can be
extracted from the whole-program flow-insensitive solution,
as shown in Sect. 5.

The semi-lattice L0 depends mostly on F. However, it may
be also dependent on I | for example, when the fragment
analysis follows a flow-insensitive whole program analysis,
I contains a whole-program solution which may need to be
represented (possibly approximately) using L0. The
fragment analysis complexity is bounded by a function of
the size of L0; therefore, it is crucial to ensure that the size
of L0 depends only on the size of F and not the size of I.
This requirement guarantees that the fragment analysis will
be feasible for relatively small fragments of very large
programs. The fragment analyses from Sect. 5 illustrate this
situation.

3.3 Fragment Analysis Safety
The fragment analyses outlined above are similar in
structure to the whole program analyses from Sect. 2. In
fact, we are only interested in fragment analyses that are
derived from whole-program analyses. Consider a safe
whole-program analysis which we want to modify in order
to obtain a safe fragment analysis. The most important
problem is to define the relationship between the semi-
lattice L0 for a fragment F and the whole-program semi-
lattices Lp for the programs p2PI(F). For each such Lp, the
designers of the fragment analysis must define an
abstraction relation _p_Lp _ L0. This relation encodes the
notion of safety and is used to prove that the analysis is safe;

Int. J. Advanced Networking and Applications
Volume: 6 Issue: 3 Pages: 2319-2328 (2014) ISSN : 0975-0290

2323

it is never explicitly constructed or used during the analysis.
If (x; x0)2_p, we will write _p(x; x0)".
Intuitively, the abstraction relation _p defines the
relationship between the \knowledge" represented by values
from Lp and the \knowledge" represented by values from
L0. If _p(x; x0), the knowledge associated with x0 \safely
abstracts" the knowledge associated with x; thus, _p is
similar in nature to the abstraction relations used for abstract
interpretation [19, 6]. The choice of _p depends both on the
original whole-program analysis and the intended clients of
the fragment analysis solution. Sect. 5 presents an example
of one such choice.

Definition 2. A solution produced by a fragment analysis
for an input pair (F; I) is safe if _p(MORPp(n); S0 n) for
each p2PI(F) and each n2N0, where S0 n is the fragment
analysis solution at n and MORPp(n) is the MORP solution
at n in p. A safe fragment analysis yields a safe solution for
each valid input pair (F; I).

With this definition in mind, we present a set of sufficient
requirements that ensures the safety of the fragment
analysis. Intuitively, the first requirement ensures that a safe
approximation in L0, as defined by the partial order _, is
also a safe abstraction according to _p. The second
requirement ensures that if x0 2L0 safely abstracts the
effects of each realizable path ending at a given node
n, it can be used to safely abstract the MORP solution at n.
Formally, for any p2PI (F) and its _p, any x; y 2 Lp and any
x0; y0 2 L0, the following must be true:

Property 1: if _p(x; x0) and y0 _ x0, then _p(x; y0)
Property 2: if _p(x; x0) and _p(y; x0), then _p(x ^ y; x0)

The next requirement ensures that the transfer functions in
the fragment analysis safely abstract the transfer functions
in the whole-program analysis. Let fn;p be the transfer
function for n 2N0 in the whole-program analysis for any
p2PI(F). For any n2N0, x2Lp and x02L0, the following must
be true:

Property 3: if _p(x; x0), then _p(fn;p(x); f0 n(x0))

If F contains the starting procedure of the program, then _ 2
N0 and the fragment analysis solution at the bottom of _ is
_0. Let _p be the whole-program solution at the bottom of _
for any p2PI(F). Then the following must be true:

Property 4: _p(_p; _0)

The next requirement ensures that for each boundary entry
node e, the summary value _e(e) safely abstracts the effects
of each realizable path that reaches e from outside of F. For
any p2PI(F), let RPout p (_; e) be the set of all realizable
paths q = (_; : : :; c; e) in p such that c =2N0; recall that fq

is the composition of the transfer functions for the nodes in
q. Then the following must be true:

Property 5: 8q2RPout p (_; e) : _p(fq(_p); _e(e))

The last requirement ensures that the summary function
_c(c) for each boundary call node c safely abstracts the
effects of each same-level realizable path from the entry to
the exit of the called procedure. Consider any p2PI(F) in
which c has a successor entry node e =2N0 and let t be the
exit node corresponding to e. Let SLRPp(e; t) be the set of
all same-level realizable paths in p from e to t. Intuitively,
each realizable path ending at t has a suffix which is a same-
level realizable path; thus, _c(c) should safely abstract each
path from SLRPp(e; t). Formally, for any x2Lp and x02L0,
the following must be true:

Property 6: 8q2SLRPp(e; t): if _p(x; x0), then _p(fq(x);
_c(c)(x0))

If the above requirements are satisfied, the context-
insensitive fragment analysis derived from a safe context-
insensitive whole-program analysis is safe, according to
Definition 2. The proof considers a fixed-point solution of
the system in Fig. 2. It can be shown that for each p 2 PI
(F), each n 2 N0 and each realizable path q = (_p; : : :; n), it
is true that _p(fq(_p); S0 n). Each such q is the
concatenation of two realizable paths r0 and r00. Path r0
starts from _p and lies entirely outside of F; if _p2N0, r0 is
empty. Path r00 = (e; : : :; n) has e2N0 and n2N0 and is the
fragment suffix of q; it may enter and leave F arbitrarily.
The proof is by induction on the length of the fragment
suffix of q.

Similarly, the context-sensitive fragment analysis derived
from a safe context sensitive whole-program analysis is
safe. It is enough to show that for each p2PI (F), each n 2N0
and each realizable path q = (_p; : : :; n), there exists a
value l0 2L0 such that _p(fq(_p);H[n; l0]). Again, this can
be proven by induction on the length of the fragment suffix
of q.

4 Whole-Program Pointer Alias Analysis
This section presents a simplified high-level description of
the Landi-Ryder whole-program pointer alias analysis [10]
for the C programming language. The analysis considers a
set of names that can be described by the grammar in Fig. 4.
Each of the names corresponds to one or more run-time
memory locations. An alias pair (or simply an alias) is a
pair of names that potentially represent the same memory
location.

<Name> ::= <SimpleName> j <Deref> j <ArrayElem>

| <FieldAccess> j <K-Limited>
<SimpleName> ::= identifier /* variable name */

| heapn /* heap location */

Int. J. Advanced Networking and Applications
Volume: 6 Issue: 3 Pages: 2319-2328 (2014) ISSN : 0975-0290

2324

<Deref> ::= *(<Name>+?) /* dereference */
<ArrayElem> ::= <Name>[?] /* array element */
<Fld> ::= identifier /* field name */
<FieldAccess> ::= <Name>.<Fld> /* field of a structure */
<K-Limited> ::= <Name># /* k-limited name */

Fig. 4. Grammar for names
If a program point n is a call to malloc or a similar function,
name heapn represents the set of all heap memory locations
created at this point during execution. If there are recursive
data structures (e.g., linked lists), the number of names is
potentially infinite. The analysis limits the number of
dereferences in a name to a given constant k; any name with
more that k dereferences is represented by a k-limited name.
For example, for k = 1, name (_((_p):f)):f is represented by
the k-limited name ((_p):f)#.

A simple name is a name generated by the SimpleName
nonterminal in the grammar. The root name of a name n is
the simple name used when n is generated by the grammar;
for example, the root name of (_p):f is p. Name n is a fixed
location if it does not contain any dereferences. Name (_p):f
is not a fixed location, while s[?]:f is a fixed location.

The lattice of the analysis is the power set of the set of all
pairs of names; the meet operator is set union and the partial
order is the \is-superset-of" relation. The analysis is flow-
and context-sensitive, and conceptually follows the Sharir-
Pnueli algorithm described in Sect. 2. However, since the
lattice is a power set, the algorithm can be modified to
propagate single aliases instead of sets of aliases | the
worklist contains triples (n,RA,PA), where n is a node, RA is
a reaching alias that is part of the solution at the entry of the
procedure to which n belongs, and PA is a possible alias at
the bottom of n. Restricting the reaching alias set to a single
alias introduces some approximation; therefore, the actual
Landi-Ryder algorithm can be viewed as an approximation
algorithm solving the more precise Sharir-Pnueli
formulation of the problem.

The fragment analyses in Sect. 5 are derived from a
modified version of the Landi-Ryder analysis. This version
considers only aliases containing a fixed location; aliases
with two non-fixed locations (e.g., an alias between (_p):f
and _q) are ignored during propagation. It can be shown that
this is safe, as long as the program does not contain
assignments in the form *p=&x; if such assignments
exist, they can be removed by introducing intermediate
temporary variables | for example, t=&x; *p=t. An
assignment whose left-hand side is a non-fixed location (i.e.,
through-deref assignment) potentially modifies many fixed
locations. A safe solution for the modified analysis is
sufficient to estimate all fixed locations possibly modified
by through-deref assignments. We refer to this process as
resolution of through-deref assignments.

5 Fragment Pointer Alias Analyses
This section describes two fragment pointer alias analyses |
basic analysis A1 and extended analysis A2 | derived from
the modified whole-program analysis in Sect. 4. They are
used for resolution of through-deref assignments. Their
design is based on a process in which flow-insensitive
whole-program pointer alias analysis is performed _rst, and
then more precise flow-sensitive fragment pointer alias
analysis is used on fragments for which better information is
needed. As described in Sect. 3.2, in this case the whole-
program information I contains a whole-program flow-
insensitive solution and the program call graph.
Analysis Input. The flow-insensitive solution SFI is obtained
using a wholeprogram flow- and context-insensitive
analysis similar to the one in [21]. Intuitively, the names in
the program are partitioned into equivalence classes; if two
names can be aliases, they belong to the same class in the
final solution. Every name starts in its own equivalence
class and then classes are joined as possible aliases are
discovered. For example, statement p=&x causes the
equivalence classes of _p and x to merge. Overall, the
analysis is similar to other flow- and context-insensitive
analyses with almost-linear cost [17, 15]. Then SFI is used
to resolve calls through function pointers and to produce a
safe approximation of the program call graph. The sets of
boundary entry, call and return nodes can be easily
determined from this graph.

The basic analysis A1 takes as input SFI and the program
call graph, as well as the source code for the analyzed
fragment F. The extended analysis A2 requires as additional
input the source code for all procedures directly or
indirectly called by procedures in F. These additional
procedures together with the procedures from F form the
extended fragment Fext . Including all transitively called
procedures allows A2 to estimate better the effects of calls
to procedures outside of F; the tradeoffs of this approach are
further discussed in Sect. 8.

Analysis Lattices. The whole-program lattice is based on the
set of names generated by the grammar in Fig. 4. Each such
name can be classified as either relevant or irrelevant. A
relevant name has a root name with a syntactic occurrence
in the fragment; all other names are irrelevant. Since the
fragment analysis solution is used to resolve through-deref
assignments, only aliases that contain a relevant non-fixed
location are useful. If the new lattice L0 contains all such
aliases, its size still potentially depends on the number of
fixed locations in the whole program. This problem can be
solved by using special placeholder variables to represent
sets of related irrelevant fixed locations; this approach is
similar to the use of representative data-flow values in other
analyses [11, 10, 7, 20, 4].

Consider an equivalence class Ei 2 SFI that contains at least
one relevant name. If Ei contains irrelevant fixed locations,

Int. J. Advanced Networking and Applications
Volume: 6 Issue: 3 Pages: 2319-2328 (2014) ISSN : 0975-0290

2325

a placeholder variable phi is used to represent them. The
aliases from L0 fall in two categories: (1) a pair of relevant
names, exactly one of which is a fixed location, and (2) a
relevant non-fixed location and a placeholder variable.
Clearly, the number of relevant names and the number of
placeholder variables depend only on the size of the
fragment; thus, the size of L0 is independent of the size of
the whole program.

In the final solution, an alias with two relevant names
represents itself, while an alias with a placeholder phi
represents a set of aliases, one for each irrelevant fixed
location represented by phi. This can be formalized by
defining an abstraction relation _p _Lp _ L0 for each p2PI
(F). For each pair of sets S 2 Lp and S0 2L0, we have _p(S;
S0) i_ each alias from S is safely abstracted by S0. Let x be
the non-fixed location in alias (x,y)2S; then _p is defined as
follows:

- If x is an irrelevant name, then (x,y) is safely abstracted by
S0
- If x and y are relevant and (x,y)2S0, then (x,y) is safely
abstracted by S0
- If x is relevant and y is irrelevant, Ei is y's equivalence
class, and (x,phi)2S0,
 then (x,y) is safely abstracted by S0

Intuitively, the above definition says that aliases involving
an irrelevant non- fixed location can be safely ignored. It
also says that irrelevant fixed locations from the same
equivalence class have equivalent behavior and need not be
considered individually. The safety implications of this
definition are discussed later. Note that if a fragment alias
solution is safe according to the above definition, it can be
used to safely resolve through-deref assignments.

Summaries at Boundary Nodes. Based on SFI , A1 and A2
construct a set of aliases _2L0. Each equivalence class Ei is
examined and for each pair of names (x,y) of a non-fixed
location x and a fixed location y from the class, the
following is done: first, if x is an irrelevant name, the pair is
ignored. Otherwise, if y is a relevant name, (x,y) is added to
_. Otherwise, if y is an irrelevant name, (x,phi) is added to _.
Clearly, (x,y) is safely abstracted by _ according to the
definition of _p given above.

The basic analysis A1 defines _e(e) = _ for each boundary
entry node e and and _c(c)(x) = _ for each x 2 L0 and each
boundary call node c. This essentially means that SFI is
used to approximate the solutions at boundary entry nodes
and boundary return nodes. For the extended analysis A2,
there are no boundary call nodes. For each boundary entry
node e that belongs to the original fragment F, the analysis
defines _e(e) = _. If e is part of the extended fragment Fext,
but is not part of the original fragment F, the analysis
defines _e(e) = θ.

Analysis Safety. To show the safety of A1, it is enough to
show that the requirements from Sect. 3.3 are satisfied.
Properties 1 and 2 are trivially satisfied. Since both _p and
_0 are the empty set, Property 4 is also true.

Showing that Property 3 is true requires careful examination
of the transfer functions from [10]. The formal proof is
based on two key observations. The first one is that aliases
involving an irrelevant non-fixed location are only
propagated through the nodes in the fragment, without
actually creating any new aliases; therefore, they can be
safely ignored. The second observation is that aliases with
the same no fixed location and with different irrelevant
fixed locations have equivalent behavior. For example, alias
(_p,x) at the top of statement q=p; results in (_p,x) and
(_q,x) at the bottom of the statement. Similarly, (_p,y)
results in (_p,y) and (_q,y). If both x and y are represented
by a placeholder phi, alias (_p,phi) results in (_p,phi) and
(_q,phi), which satisfies Property 3.

The set _ described above is extracted from the whole-
programflow-insensitive alias solution, which is safe.
Therefore, _ safely abstracts any alias that could be true at a
node in the program; thus, Properties 5 and 6 are true. Since
all requirements are satisfied, A1 is safe. Similarly to the
whole-program case, the actual implementation propagates
single aliases instead of sets of aliases. As a result, the
reaching alias set is restricted to a single alias and therefore
some approximation is introduced. Of course, the resulting
solution is still safe.

For the extended analysis A2, it is not true that the solution
is safe at each node in the extended fragment. For example,
consider the entry node of a procedure that was not in the
original fragment F. If this procedure is called from outside
of the extended fragment Fext , aliases could be propagated
along this call edge during the whole-program analysis, but
would be missing in the fragment analysis. However, it can
be proven that for each node in the original fragment F, the
solution is safe. The proof is very similar to the one outlined
in Sect. 3.3, and still requires that Properties 1 through 4 are
true. For each realizable path q starting at _ and ending at a
node in F, its fragment suffix is the subpath starting at the
first node in q that belongs to F. The proof is by induction
on the length of the fragment suffix; the base case of the
induction depends on the fact that _e(e) = _ for boundary
entry nodes in F, and therefore the solution at such nodes is
safe.

6 Empirical Results
Our implementation uses the PROLANGS Analysis
Framework2 (version 1.0), which incorporates the Edison
Design Group front end for C/C++. The results were
gathered on a Sun Sparc-20 with 352 MB of memory. The
implementation analyzes a reduced version of C that

Int. J. Advanced Networking and Applications
Volume: 6 Issue: 3 Pages: 2319-2328 (2014) ISSN : 0975-0290

2326

excludes signals, setjmp, and longjmp, but allows function
pointers, type casting and union types.

Table 2 describes the C programs used in our experiments.
It shows the program size in lines of code and number of
ICFG nodes, the number of procedures, the total number of
assignments, and the number of through-deref assignments.

Table 2. Analyzed Programs

For each of the data programs, we extracted by hand subsets
of related procedures that formed a cohesive fragment.
Significant effort was put in determining realistic fragments
| the program source code was thoroughly examined, the
program call graph was used to obtain better understanding
of the calling relationships in the program, and the
documentation (both external and inside the source code)
was carefully analyzed. For each program, two fragments
were extracted. For example, for zip one of the fragments
consisted of all procedures implementing the implosion
algorithm. For espresso, one of the fragments consisted of
the procedures for reducing the cubes of a boolean function.
For sc, one of the fragments consisted of the procedures
used to evaluate expressions in a spreadsheet. Some
characteristics of the fragments are given in Table 3.

For each fragment, three experiments were performed; the
results are shown in Table 4. In the first experiment, the
solution from the whole-program flowinsensitive (FI)
analysis was used at each through-deref assignment to
determine the number of simple names possibly modified by
the assignment. For a fixed location that was not a simple
name, a modification of its root simple name was counted
(e.g., a modification of s:f was counted as a modification of
s). Then

Table 3. Analyzed Fragments

Table 4. Precision Comparison

Fragmen
t

WholePrg
m FI

Basic
FFS

Perce
nt

Extende
d FFS

Perce
nt

zip.1 15.78 12.98 82.3 12.98 82.3
zip.2 3.88 1.02 26.3 1.02 26.3
sc.1 9.50 9.00 94.7 1.00 10.5
sc.2 13.14 3.29 25.0 3.29 25.0
larn.1 17.00 14.57 85.7 1.00 5.9
larn.2 9.00 9.00 100.0 1.00 11.1
espresso.
1

107.10 107.1
0

100.0 34.00 31.7

espresso.
2

57.55 57.55 100.0 35.11 61.0

tsl.1 41.87 17.07 40.8 1.00 2.4
tsl.2 41.88 24.82 59.3 1.00 2.4
moria.1 132.80 1.46 1.1 1.46 1.1
moria.2 31.04 3.55 11.4 3.55 11.4

the average across all through-deref assignments in the
fragment was taken. In the second experiment, the FI
analysis was followed by the basic fragment flowsensitive
(FFS) analysis. Again, for each through-deref assignment
the number of simple names possibly modified was
determined; placeholder variables were expanded to
determine the actual simple names modified. Then the
average across all through-deref assignments was taken.
Each of these averages is shown as an absolute value and as
a percent of the FI average. The third experiment used the
extended fragment analysis instead of the basic fragment
analysis.
Overall, the results show that the precision of the extended
analysis is very good. In particular, for seven fragments it
produces averages very close to 1, which is the lower
bound. The averages are bigger than 4 for only three
fragments; all three take as input a pointer to an external
data structure, and a large number of the through-deref
assignments in the fragment are through this pointer. The
pointer itself is not modified, and each modification through
it resolves to the same number of simple names as in the FI
solution.

Fragment ICFG
Node

s

%

Tota
l

Proc
s

Boundary Assignments
Entrie

s
Call

s
All Dere

f

zip.1 1351 21.9 28 5 17 776 59
zip.2 429 7.0 9 5 19 255 50
sc.1 1238 18.5 30 3 30 609 8
sc.2 793 11.9 13 3 10 459 23
larn.1 345 2.9 4 4 35 188 46
larn.2 420 3.5 11 9 44 216 4
espresso.
1

440 2.9 6 2 40 234 38

espresso.
2

963 6.3 19 5 113 461 53

tsl.1 355 2.3 13 4 33 175 15
tsl.2 1004 6.5 29 7 134 459 17
moria.1 2678 13.2 43 14 348 163

4
392

moria.2 1221 6.0 27 7 149 644 49

Pro
gra
m

L
O
C

IC
FG
No
de
s

Pr
oc
s

Assign
ments

Pro
gra
m

L
O
C

IC
FG
No
de
s

Pr
oc
s

Assignm
ents

Al
l

D
er
ef

Al
l

D
er
ef

zip 81
77

61
72

12
2

34
43

58
2

espr
esso

14
91
0

15
33
9

37
2

78
22

13
22

sc 85
30

66
78

16
0

34
40

15
9

tsl 16
05
3

15
46
9

47
1

72
49

50
7

larn 10
01
4

12
06
3

29
8

60
21

38
9

mor
ia

25
29
2

20
21
3

45
8

10
55
7

13
58

Int. J. Advanced Networking and Applications
Volume: 6 Issue: 3 Pages: 2319-2328 (2014) ISSN : 0975-0290

2327

The performance of the basic analysis is less satisfactory.
For five fragments, it achieves the same precision as the
extended analysis. For the remaining fragments, in five
cases the solution is close to the FI solution. The main
reason is that precision gains from flow-sensitivity are lost
at calls to procedures outside of the fragment.

Table 5 shows the running times of the analyses in minutes
and seconds. The last two columns give the used space in
kilobytes. The results show that the cost of the fragment
analyses is acceptable, in terms of both space and time.

7 Related Work
In Harrold and Rothermel's separate pointer alias analysis
[8], a software module is analyzed separately and later
linked with other modules. The analysis is based

Table 5. Analysis Time and Space
Fragment WholePr

gm FI
Basi
c
FFS

Extend
ed FFS

Basic
Space

Extende
d Space

zip.1 0:02 1:01 1:35 2544 3784
zip.2 0:02 0:18 0:18 2064 2064
sc.1 0:02 0:18 0:18 2504 2504
sc.2 0:02 0:25 0:33 2664 2824
larn.1 0:03 0:22 0:27 3760 6560
larn.2 0:03 0:20 0:28 3680 6556
espresso.1 0:07 0:52 1:58 5504 17400
espresso.2 0:07 0:56 3:07 5504 26904
tsl.1 0:08 0:33 0:43 5776 8672
tsl.2 0:08 1:15 1:25 12480 18648
moria.1 0:09 1:22 1:29 9504 10464
moria.2 0:09 1:39 1:37 7608 17440

on the whole-program analysis from [10]; it simulates the
aliasing effects that are possible under all calling contexts
for the module. Placeholder variables are used to represent
sets of variables that are not explicitly referenced in the
module, similarly to the placeholder variables in our
fragment pointer alias analyses. Aliases are assigned extra
tags describing the module calling context.

There are several differences between our work and [8].
First, we have designed a general framework for fragment
analysis and emphasized the importance of the theoretical
requirements that ensure analysis safety and feasibility.
Second, the intended application of our fragment pointer
alias analyses is to improve the information about a part of
the program after an inexpensive whole-program analysis;
the application in [8] is separate analysis of single-entry
modules. Finally, [8] does not present empirical evaluation
of the performance of the analysis; we believe that their
approach may have scalability problems.

Reference [11] presents an analysis that decomposes the
program into regions in which several local problems are
solved. Representative values are used for actual data-flow
information that is external to the region; our placeholder
variables are similar to these representative values. Other
similar mechanisms are the non-visible names from [10, 7],
extended parameters from [20], and unknown initial values
from [4].We use an abstraction relation to capture the
correspondence between the representative and the actual
data-flow information; this is similar to the use of
abstraction relations in the field of abstract interpretation
[19, 6].

The work in [3] also addresses the analysis of program
fragments and uses the notion of representative data-flow
information for external data-flow values. However, in [3]
the specific fragments are libraries with no boundary calls,
the analysis computes def-use associations in object-
oriented languages with exceptions, and there is no
assumption of available whole-program information.

Cardelli [2] considers separate type checking and
compilation of program fragments. He proposes a
theoretical framework in which program fragments are
separately compiled in the context of some information
about missing fragments, and later can be safely linked
together.

Model checking is a technique for verifying properties of
finite-state systems; the desired properties are specified
using temporal-logic formulae. Modular model checking
verifies properties of system modules, under some
assumptions about the environment with which the module
interacts [9]. These assumptions play an analogous role to
that of the whole-program information in fragment
analysis. Further discussion of the relationship between
data-flow analysis and model checking is given in [14].

There is some similarity in the problem addressed by our
work and that in [5], which presents an analysis of modular
logic programs for which a compositional semantics is
defined. Each module can be analyzed using an abstract
interpretation of the semantics. The analysis results for
separate modules can be composed to yield results for the
whole program, or alternatively, the results for one module
can be used during the analysis of another module.

8 Conclusions
This paper is a first step in investigating the theory and
practice of fragment data-flow analysis. It proposes
fragment analysis as an alternative to traditional whole-
program analysis. The theoretical issues involved in the
design of safe and feasible flow-sensitive fragment analysis
are discussed. One possible application of fragment analysis
is to be used after a whole-program flow-insensitive

Int. J. Advanced Networking and Applications
Volume: 6 Issue: 3 Pages: 2319-2328 (2014) ISSN : 0975-0290

2328

analysis in order to improve the precision for an interesting
portion of the program. This paper presents one such
example, in which better information about modifications
through pointer dereference is obtained by performing flow-
and context-sensitive fragment pointer alias analysis. The
design of two such analyses is described, and empirical
results evaluating their cost and precision are presented.

The empirical results show that the extended analysis
presented in Sect. 5 can achieve significant precision
benefits at a practical cost. The performance of the basic
analysis is less satisfactory, even though in about half of the
cases it achieves the precision of the extended analysis.
Clearly, in some cases the whole-program flow-insensitive
solution is not a precise enough estimate of the
effects of calls to external procedures. The extended
analysis solves this problem for the fragments used in our
experiments. We expect this approach to work well in cases
when the extended fragment is not much bigger than the
original fragment. One typical example would be a fragment
with calls only to relatively small external procedures which
provide simple services; in our experience, this is a common
situation. However, in some cases the extended fragment
may contain a prohibitively large part of the program;
furthermore, the source code for some procedures may not
be available. We are currently investigating different
solutions to these problems.

Acknowledgments. We would like to thank Thomas
Marlowe, Matthew Arnold, and the anonymous reviewers
for their valuable comments.

References
[1]. D. Atkinson and W. Griswold. Effective whole-

program analysis in the presence of pointers. In Proc.
Symp. on the Foundations of Software Engineering,
pages 46{55, 1998.

[2]. L. Cardelli. Program fragments, linking and
modularization. In Proc. Symp. On Principles of Prog.
Lang., pages 266{277, 1997.

[3]. R. Chatterjee and B. G. Ryder. Data-flow-based
testing of object-oriented libraries. Technical Report
DCS-TR-382, Rutgers University, 1999.

[4]. R. Chatterjee, B. G. Ryder, and W. Landi. Relevant
context inference. In Proc. Symp. on Principles of
Prog. Lang., pages 133{146, 1999.

[5]. M. Codish, S. Debray, and R. Giacobazzi.
Compositional analysis of modular logic programs. In
Proc. Symp. on Principles of Prog. Lang., pages
451{464, 1993.

[6]. P. Cousot and R. Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by
construction or approximation of fixed points. In

[7]. Proc. Symp. on Principles of Prog. Lang., pages
238{252, 1977.

[8]. M. Emami, R. Ghiya, and L. J. Hendren. Context-
sensitive interprocedural pointsto analysis in the
presence of function pointers. In Proc. Conf. on Prog.
Lang. Design and Implementation, pages 242{257,
1994.

[9]. M. J. Harrold and G. Rothermel. Separate computation
of alias information for reuse. IEEE Transactions on
Software Engineering, 22(7):442{460, July 1996.

[10]. O. Kupferman and M. Y. Vardi. Modular model
checking. In Proc. Symp. on Compositionality, LNCS
1536, pages 381{401, 1997.

[11]. W. Landi and B. G. Ryder. A safe approximation
algorithm for interprocedural pointer aliasing. In Proc.
Conf. on Prog. Lang. Design and Implementation,
pages 235{248, 1992.

[12]. T. Marlowe and B. G. Ryder. An efficient hybrid
algorithm for incremental data flow analysis. In Proc.
Symp. on Principles of Prog. Lang., pages 184{196,
1990.

[13]. T. Marlowe and B. G. Ryder. Properties of data flow
frameworks: A unified model. Acta Informatica,
28:121{163, 1990.

[14]. T. Reps, S. Horwitz, and M. Sagiv. Precise
interprocedural dataflow analysis via graph
reachability. In Proc. Symp. on Principles of Prog.
Lang., pages 49{61, 1995.

[15]. D. Schmidt. Data flow analysis is model checking of
abstract interpretations. In Proc. Symp. on Principles
of Prog. Lang., pages 38{48, 1998.

[16]. M. Shapiro and S. Horwitz. Fast and accurate flow-
insensitive points-to analysis. In Proc. Symp. on
Principles of Prog. Lang., pages 1{14, 1997.

[17]. M. Sharir and A. Pnueli. Two approaches to
interprocedural data flow analysis. In S. Muchnick and
N. Jones, editors, Program Flow Analysis: Theory and

[18]. Applications, pages 189{234. Prentice Hall, 1981.
[19]. B. Steensgaard. Points-to analysis in almost linear

time. In Proc. Symp. on Principlesof Prog. Lang.,
pages 32{41, 1996.

[20]. P. Stocks, B.G. Ryder, W. Landi, and S. Zhang.
Comparing flow- and contextsensitivity on the
modification side-effects problem. In Proc.
International Symposium

[21]. on Software Testing and Analysis, pages 21{31, 1998.
[22]. R. Wilhelm and D. Maurer. Compiler Design.

Addison-Wesley, 1995.
[23]. R. Wilson and M. Lam. Efficient context-sensitive

pointer analysis for C programs. In Proc. Conf. on
Prog. Lang. Design and Implementation, pages 1{12,
1995.

[24]. S. Zhang, B. G. Ryder, and W. Landi. Program
decomposition for pointer aliasing:

[25]. A step towards practical analyses. In Proc. Symp. on
the Foundations of Software Engineering, pages
81{92, 1996.

